Sen(Qian)’s Memo
This website is Donglin Qian (Torin Sen)’s memo, especially about machine learning papers and competitive programming.
EM-Algorithm
2024-10-03
2021-TPAMI-[LBE]Instance-Dependent Positive and Unlabeled Learning With Labeling Bias Estimation
グラフィカルモデルによって、ground truthのyiは隠れ変数であり、ラベルがついているかsiとインスタンスxiは明示されている変数である。 モデルとして、多層パーセプトロンかロジスティック回帰を使っている。これで、グラフィカルモデルに従って必要なp(yi|xi)やp(si|xi, yi)を定義する。 学習自体はEMアルゴリズムで行っている(変分推論ではない)
2024-05-22
2019-ECML PKDD-[PWE]Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
BiasつきのPUについて、数理的に考察をし手法も提案した論文。propensity scoreという量を導入し、それを損失関数の重みに寄与させることでbiasを考慮できるとした。それをRiskの式に導入したのちに、推定の手法として2つの変数があるので(propensity scoreと本体の推定器)、EMアルゴリズムで交互に最適化をしていた。
